• <center id="q9oyw"><p id="q9oyw"></p></center>
      <center id="q9oyw"><optgroup id="q9oyw"></optgroup></center>
    • <fieldset id="q9oyw"><button id="q9oyw"><option id="q9oyw"></option></button></fieldset>
      <source id="q9oyw"><address id="q9oyw"></address></source>
      <thead id="q9oyw"><button id="q9oyw"></button></thead>
      <bdo id="q9oyw"></bdo>
      日本AⅤ精品一区二区三区日,国精产品一区二区三区有限公司,免费一区视频,中文字幕无码第三,gogo专业大尺度高清人体,水咲萝拉无码正在播放,超碰人人看人人爱,人妻熟妇乱又伦精品视频无广告
      網站導航
      技術文章
      當前位置:主頁 > 技術文章 > 四環凍干機—真空冷凍干燥傳熱傳質原理(五)

      四環凍干機—真空冷凍干燥傳熱傳質原理(五)

      更新時間:2022-08-24 點擊次數:1613

      2.2.2多孔介質的凍干理論

      1979年利亞皮斯(Liapis))和利奇菲爾德(Litchfield)等提出了冷凍干燥過程的升華-解析模型。該模型的思想是把已干層當做多孔介質,利用多孔介質內熱質傳遞理論建立已干層內的熱質傳遞模型。該模型的特點是:簡化條件相對來說比較少,能較好地模擬凍干過程,與實際情況比較接近,但求解較困難,所需物性參數較多。近年來有不少學者在此基礎又做了進一步改進,多數是為了提高藥品的質量和干燥速率而建的模型。
      2.2.2.1一維升華-解析模型
      一維升華-解析模型 (1979 年 Liapis 和 Litchfield 提出的),在主干燥過程傳熱傳質的物理模型如圖2-12所示。已干區(I)和凍結區(II)非穩態能量傳熱平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      式中,Nt為總的質量流,kg/(m2•s) ;Cpg為氣體的比熱容,J/(kg•K);ρIe為已干層的有效密度,kg/m3; cpIe為已干層有效比熱容,J/(kg·K);csw為結合水濃度,kg水/kg固體;ρI為已干層密度,kg/m3 ε為已干層的孔隙率(無量綱);Mw為水蒸氣分子量,kg/mol;Rg為理想氣體常數,J/(mol·K)pw為水蒸氣分壓,Pa;Nw為水蒸氣質量流,kg/(m2·s);Min為惰性氣體分子量,kg/mol; Nin為惰性氣體質量流,kg/(m2•s);pin為惰性氣體分壓,Pa;κg為解析過程的內部傳質系數,s-1 H(t)為t時刻移動冰界面的尺寸,m;△Hv為結合水解吸潛熱,J/kg。

      該模型適合于可簡化成平板狀的物料,例如牛奶的凍干。


      d65f4aa166.png

      2.2.2.2二維軸對稱升華-解析模型

      二維軸對稱解析升華模型( 1997 年Mascarenhas等人提出的) ,在主干燥過程傳熱傳質的物理模型如圖2-12所示。

      image.png

      已干區(I)和凍結區(Ⅱ)非穩態傳熱能量平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      中,κIe 為已干層有效熱導率,W/ (Km)k為凍結層熱導率,W/(Km)Cpw為水蒸氣的質量濃度,kg/m3cpin 為惰性氣體的質量濃度,kg/m3c*sw為結合水平衡濃度,kg水/kg固體;Ntx為x方向總的質量流,kg/(m2•s);Nty為y方向總的質量流,kg/(m2·s);其余符號同前。

      圖中 2-13 中 qqq為來自不同方向的熱流,W/m2

      image.png

      2.2.2.3多維動態模型
      實際為二維軸對稱模型(1998年Shee- han和Liapis提出的),干燥過程傳熱傳質物理模型可簡化成如圖2-14所示。主干燥階段在已干層和凍結層中傳熱能量平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      二次干燥階段傳熱傳質平衡方程為:

      image.png

      式中,H(t, r)為半徑為r時的H(t); Z為移動冰界面到達z處的值;Nt,z為z方向總的質量流,kg/(m2· s);Nw,rNw,z分別為r和z方向水蒸氣的質量流,kg/(m2· s);Nin,rNin,z分為r和z方向惰性氣體的質量流,kg/ (m2·s);其余符號同前。

      image.png

      上述模型只是對于單個小瓶來說,如果對排列在擱板上的多個小瓶來說,可以認為對小瓶的供熱是排列位置的函數,同樣可以使用。該模型的優點是能提供小瓶中已干層中結合水的濃度和溫度的的濃度和溫度的動力學行為的定量分布。

      ad4a9d43a3.png

      2.2.2.4考慮瓶塞和

      考慮瓶塞和室壁溫度影響的二維軸對稱非穩態模型的物理模型如圖2-15所示。數學模型與1998年Sheehan和Laps提出的多維動態模型相同,即與式(2-75)~式(2-82)相同,只是確定邊界條件qⅠ、9Ⅱ、9Ⅲ時考慮了瓶塞和干燥室壁溫度的影響。


      image.png


      ad4a9d43a3.png

      2.2.2.5考慮平底彎曲影響的二維軸對稱非穩態模型

      2005年Suling Zhai等提出的考慮平底彎曲影響的二維軸對稱非穩態模型的物理模型如圖2-16所示。主干燥階段傳熱能量平衡方程為

      image.png

      傳質連續方程為

      image.png

      式中,ρg為玻璃瓶的密度,kg/m3,cpg為玻璃瓶的比熱容,J/(kg·K);Tg為玻璃瓶的溫度,K;kg為玻璃瓶的熱導率,W/(K·m),ρice為冰的密度,kg/m3,cpice為冰的比熱容,J/(kg·K),Tice為冰的溫度,K;kice為冰的熱導率,W/(K·m);Mw為水蒸氣分子量,kg/mol;Rg為理想氣體常數,J/(mol·K);pspc分別表示升華界面和冷凝器表面標準水蒸氣壓力,Pa;p為千燥室的內總壓力,Pa;Nwt為水蒸氣總的質量流,kg(m2·s);k1k2分別為體擴散和自擴散常數;h1h2分別為擴散和對流傳質系數,m/s。

      圖2-16中,Cgap為玻璃瓶底的彎曲孔隙的高度,mm。image.png


      ad4a9d43a3.png

      2.2.2.6微波凍干一維圓柱坐標下的雙升華面模型

      圖2-17為簡化的具有電介質核圓柱多孔介質微波冷凍干燥的雙升華界面模型的一維圓柱坐標物理模型。對具有電介質核的多孔介質微波冷凍干燥過程,物料將被內外同時加熱,因而可能產生2個升華界面。一方面,物料外層的冰吸收微波能而升華,形成第一升華界面;另一方面,由于電介質核較冰的損耗系數大,微波能主要被其吸收并傳導至物料層使冰升華, 從而形成第二升華界面。因此, 多孔介質內部將出現2個干區、冰區和電介質核4 個區域 (見圖2-17)。

      image.png

      已干區傳熱能量平衡方程:

      image.png

      傳質連續方程:

      image.png

      凍結區傳熱能量平衡方程:

      image.png

      傳質連續方程:

      image.png

      式中,λ為熱導率,W/(m•K);I升華源強度,(kg·m3)/s;△Hs為升華潛熱,J /kg;q為微波能吸收強度,J/(s·m3),S為飽和度;其余符號同前。


      2.2.2多孔介質的凍干理論

      1979年利亞皮斯(Liapis))和利奇菲爾德(Litchfield)等提出了冷凍干燥過程的升華-解析模型。該模型的思想是把已干層當做多孔介質,利用多孔介質內熱質傳遞理論建立已干層內的熱質傳遞模型。該模型的特點是:簡化條件相對來說比較少,能較好地模擬凍干過程,與實際情況比較接近,但求解較困難,所需物性參數較多。近年來有不少學者在此基礎又做了進一步改進,多數是為了提高藥品的質量和干燥速率而建的模型。
      2.2.2.1一維升華-解析模型
      一維升華-解析模型 (1979 年 Liapis 和 Litchfield 提出的),在主干燥過程傳熱傳質的物理模型如圖2-12所示。已干區(I)和凍結區(II)非穩態能量傳熱平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      式中,Nt為總的質量流,kg/(m2•s) ;Cpg為氣體的比熱容,J/(kg•K);ρIe為已干層的有效密度,kg/m3; cpIe為已干層有效比熱容,J/(kg·K);csw為結合水濃度,kg水/kg固體;ρI為已干層密度,kg/m3 ε為已干層的孔隙率(無量綱);Mw為水蒸氣分子量,kg/mol;Rg為理想氣體常數,J/(mol·K)pw為水蒸氣分壓,Pa;Nw為水蒸氣質量流,kg/(m2·s);Min為惰性氣體分子量,kg/mol; Nin為惰性氣體質量流,kg/(m2•s);pin為惰性氣體分壓,Pa;κg為解析過程的內部傳質系數,s-1 H(t)為t時刻移動冰界面的尺寸,m;△Hv為結合水解吸潛熱,J/kg。

      該模型適合于可簡化成平板狀的物料,例如牛奶的凍干。


      d65f4aa166.png

      2.2.2.2二維軸對稱升華-解析模型

      二維軸對稱解析升華模型( 1997 年Mascarenhas等人提出的) ,在主干燥過程傳熱傳質的物理模型如圖2-12所示。

      image.png

      已干區(I)和凍結區(Ⅱ)非穩態傳熱能量平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      中,κIe 為已干層有效熱導率,W/ (Km)k為凍結層熱導率,W/(Km)Cpw為水蒸氣的質量濃度,kg/m3cpin 為惰性氣體的質量濃度,kg/m3c*sw為結合水平衡濃度,kg水/kg固體;Ntx為x方向總的質量流,kg/(m2•s);Nty為y方向總的質量流,kg/(m2·s);其余符號同前。

      圖中 2-13 中 qqq為來自不同方向的熱流,W/m2

      image.png

      2.2.2.3多維動態模型
      實際為二維軸對稱模型(1998年Shee- han和Liapis提出的),干燥過程傳熱傳質物理模型可簡化成如圖2-14所示。主干燥階段在已干層和凍結層中傳熱能量平衡方程為:

      image.png

      傳質連續方程為:

      image.png

      二次干燥階段傳熱傳質平衡方程為:

      image.png

      式中,H(t, r)為半徑為r時的H(t); Z為移動冰界面到達z處的值;Nt,z為z方向總的質量流,kg/(m2· s);Nw,rNw,z分別為r和z方向水蒸氣的質量流,kg/(m2· s);Nin,rNin,z分為r和z方向惰性氣體的質量流,kg/ (m2·s);其余符號同前。

      image.png

      上述模型只是對于單個小瓶來說,如果對排列在擱板上的多個小瓶來說,可以認為對小瓶的供熱是排列位置的函數,同樣可以使用。該模型的優點是能提供小瓶中已干層中結合水的濃度和溫度的的濃度和溫度的動力學行為的定量分布。

      ad4a9d43a3.png

      2.2.2.4考慮瓶塞和

      考慮瓶塞和室壁溫度影響的二維軸對稱非穩態模型的物理模型如圖2-15所示。數學模型與1998年Sheehan和Laps提出的多維動態模型相同,即與式(2-75)~式(2-82)相同,只是確定邊界條件qⅠ、9Ⅱ、9Ⅲ時考慮了瓶塞和干燥室壁溫度的影響。


      image.png



      ad4a9d43a3.png

      2.2.2.5考慮平底彎曲影響的二維軸對稱非穩態模型

      2005年Suling Zhai等提出的考慮平底彎曲影響的二維軸對稱非穩態模型的物理模型如圖2-16所示。主干燥階段傳熱能量平衡方程為

      image.png

      傳質連續方程為

      image.png

      式中,ρg為玻璃瓶的密度,kg/m3,cpg為玻璃瓶的比熱容,J/(kg·K);Tg為玻璃瓶的溫度,K;kg為玻璃瓶的熱導率,W/(K·m),ρice為冰的密度,kg/m3,cpice為冰的比熱容,J/(kg·K),Tice為冰的溫度,K;kice為冰的熱導率,W/(K·m);Mw為水蒸氣分子量,kg/mol;Rg為理想氣體常數,J/(mol·K);pspc分別表示升華界面和冷凝器表面標準水蒸氣壓力,Pa;p為千燥室的內總壓力,Pa;Nwt為水蒸氣總的質量流,kg(m2·s);k1k2分別為體擴散和自擴散常數;h1h2分別為擴散和對流傳質系數,m/s。

      圖2-16中,Cgap為玻璃瓶底的彎曲孔隙的高度,mm。

      image.png


      ad4a9d43a3.png

      2.2.2.6微波凍干一維圓柱坐標下的雙升華面模型

      圖2-17為簡化的具有電介質核圓柱多孔介質微波冷凍干燥的雙升華界面模型的一維圓柱坐標物理模型。對具有電介質核的多孔介質微波冷凍干燥過程,物料將被內外同時加熱,因而可能產生2個升華界面。一方面,物料外層的冰吸收微波能而升華,形成第一升華界面;另一方面,由于電介質核較冰的損耗系數大,微波能主要被其吸收并傳導至物料層使冰升華, 從而形成第二升華界面。因此, 多孔介質內部將出現2個干區、冰區和電介質核4 個區域 (見圖2-17)。

      image.png

      已干區傳熱能量平衡方程:

      image.png

      傳質連續方程:

      image.png

      凍結區傳熱能量平衡方程:

      image.png

      傳質連續方程:

      image.png

      式中,λ為熱導率,W/(m•K);I升華源強度,(kg·m3)/s;△Hs為升華潛熱,J /kg;q為微波能吸收強度,J/(s·m3),S為飽和度;其余符號同前。


      如果您有任何問題,請跟我們聯系!

      聯系我們

      四環福瑞科儀科技發展(北京)有限公司 版權所有 備案號:京ICP備18008300號-3 技術支持:化工儀器網 管理登陸 sitemap.xml

      地址:北京市北京經濟技術開發區榮華中路8號院9號樓5層606

      在線咨詢 聯系方式 二維碼

      服務熱線

      13718173581

      掃一掃,關注我們

      主站蜘蛛池模板: 日产无人区一线二线三线小说| 国产自慰在线观看| 全网免费中文无码字幕| 欧洲无码亚洲AⅤ一品遒| 免费观看的成年网站推荐最熱門最齊全電影!| 国产一级特黄性生活大片| 亚洲制服另类无码专区| 亚洲AV永久精品无码桃色| 国产精品夜间视频香蕉| 国产成人无码午夜视频在线播放| 免费精品国产自在| 国产精品午夜av片| 一区二区三区四区高清自拍| 性欧美老妇另类XXXX| 吃奶呻吟打开双腿做受视频| 视频一区二区不中文字幕| 国产精品流白浆在线观看| 久久久久成人精品| ww污污污网站在线看com| 日韩中文字幕在线| 久久精品久久电影免费| 少妇高清一区二区免费看 | 青草热在线观看精品视频| 久久久亚洲av波多野结衣| 黄色电影在线看| 一边摸一边做爽的视频17国产| 国产成人久久蜜一区二区| 午夜情视频午夜性视频无码| 日本国产精品第一页久久| 色噜噜噜亚洲男人的天堂| 一区二区三区亚洲区| 厨房挺进紧致班主任少妇| 久久精品激情亚洲一二区| 国产精品扒开腿做爽爽爽视频| 天码av无码一区二区三区四区| 亚洲欧美日韩在线不卡| 狠狠色噜噜狠狠亚洲AV| 国产福利高颜值在线观看| 国产福利视频区一区二区| 国产福利一区二区久久| 欧美人妻少妇精品久久黑人|